
Sector Cache Optimizations for the K Computer

Swann Perarnau, Mitsuhisa Sato

RIKEN AICS, University of Tsukuba

Sector Cache on the SPARCVIIIfx

IOn-demand split of the shared L2 cache.
IUser controlled mapping between accesses and sectors.
→ Isolation of thrashing accesses.
→ Select and keep useful data in cache.

Our Goals

Assess applicability of the sector cache to optimize HPC applications.
I Study potential optimization strategies.
IHelp users find good sector cache optimizations.
IAim for as much automation as possible.

Issues

I Low-level compile-time API.
IHard to predict impact on performance.
I Little support from compiler and performance analysis tools.

Current Sector Cache API

double myarray[NSIZE];
double otherarray[NSIZE];

void mywork(void)
{

int i;
double sum = 0;

#pragma statement cache_sector_size 1 11
#pragma statement cache_subsector_assign myarray

for(i = 2; i < NSIZE-2; i++)
{

// myarray in sector 1
sum += myarray[i-2] + myarray[i-1] +

myarray[i] + myarray[i+1] +
myarray[i+2] + otherarray[i];

}
}

Results

I efficient cache optimization of classical HPC benchmarks.
I framework for locality analysis and optimization of HPC applications.
I on-going automation, already little user action required.

Framework Overview

Hotspot
detection

Structures/Scope
setup

DWARF reader

Binary
instrumentation

Locality analysis

Code
modification

Locality Measurements

Reuse Distance: for a memory access, the number of unique
memory locations touched since the previous access to the same
location.
→ an architecture-independent measure closely related to the cache
misses triggered by an application.
→ use it to measure consequences of isolating one structure by itself
with the sector cache.

Reuse exemple

Access :

load 0x10
load 0x20
load 0x30
load 0x10
load 0x20
load 0x10
load 0x30

Distance :

∞
∞
∞
2
2
1
2

D
en

sit
y

Distance

Validating the Framework: a toy example

1.75MB 3.5MB 7MB ∞

0

2 · 106

4 · 106

6 · 106

8 · 106

1 · 107

1.2 · 107

1.4 · 107
M1
M2
M3

Reuse Distances of Each Structures

1 2 3 4 5 6 7 8 9 10 11

0
2
4
6
8
10
12
14
16
18
20
22
24

Sector Size

C
ac
he

M
iss

es
R
ed
uc
tio

n
(%

)

M1
M2
M3

Selected by framework

Optimizations for all Sector Configurations

Optimizing the NAS Parallel Benchmarks

Benchmark Function Isolated Variables Sector Size Miss Reduction (%) Runtime Reduction (%)
CG conj_grad p (1,11) 19 10

LU

ssor a,b,c,d

(2,10)

48 8
blts ldz,ldy,ldx,d 75 10
buts d,udx,udy,udz 18 3
jacld a,b,c,d 64 14
jacu a,b,c,d 57 6

Acknowledgements

Part of the results were obtained by early access to the K computer at the RIKEN
AICS. This work was supported by the JSPS Grant-in-Aid for JSPS Fellows Number
24.02711.

RIKEN Advanced Institute for Computational Science Programming Environment Research Team perarnau@riken.jp


